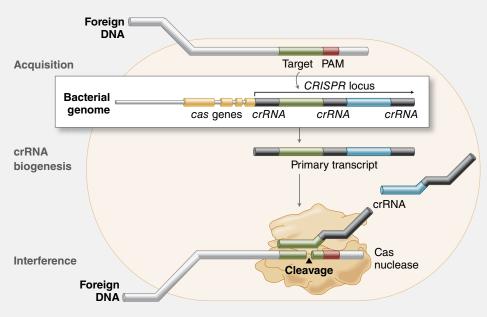

Genome Editing

TOOLS FOR CRISPR/CAS APPLICATIONS



Genome Editing: Tools for CRISPR/Cas Applications

Genome editing is enabled by the development of tools to make precise, targeted changes to the genome of living cells. Recent approaches to targeted genome modification – zinc-finger nucleases (ZFNs) and transcription-activator like effector nucleases (TALENs) – enable researchers to generate mutations by introducing double-stranded breaks to activate repair pathways. These approaches are costly and time consuming to engineer, limiting their widespread use, particularly for large scale, high-throughput studies. Recently, methods based on a bacterial CRISPR-associated protein-9 nuclease (Cas9) from *Streptococcus pyogenes* have generated considerable excitement.

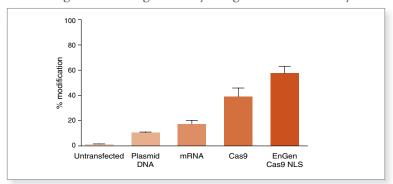
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and CRISPR-associated (Cas) genes are essential for adaptive immunity in select bacteria and archaea, enabling the organisms to respond to and eliminate invading genetic material.

CRISPR/Cas in vivo: Bacterial Adaptive Immunity

In the acquisition phase, foreign DNA is incorporated into the bacterial genome at the CRISPR locus. The CRISPR locus is then transcribed and processed into crRNA during crRNA biogenesis. During interference, Cas endonuclease complexed with crRNA cleaves foreign DNA containing a crRNA complementary sequence adjacent to the PAM sequence. (Figure not drawn to scale.)

CRISPR/Cas Genome Editing

The simplicity of the CRISPR nuclease system (nuclease and guide RNA), makes this system attractive for laboratory use. Breaks activate repair through error prone Non-Homologous End Joining (NHEJ) or Homology Directed Repair (HDR). In the presence of a donor template with homology to the targeted locus, the HDR pathway may operate, allowing for precise mutations to be made. In the absence of a template, NHEJ is activated, resulting in insertions and/or deletions (indels), which disrupt the target locus (2,3).

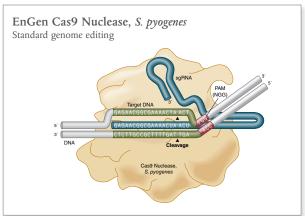

TOOLS & RESOURCES

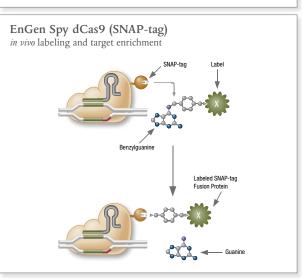
Visit www.neb.com/GenomeEditing to find our up-to-date listing of products and protocols to support this application.

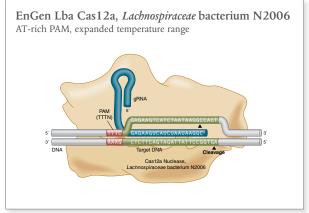
Direct Introduction of Cas RNP Complexes

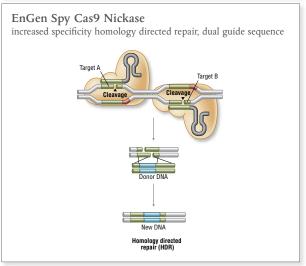
The highest efficiency strategy for genome engineering with CRISPR/Cas is direct introduction of Cas9/guide RNA complexes (4-9) or Cas12a (Cpf1)/guide RNA complexes. This method further simplifies CRISPR/Cas workflows and has been reported to increase mutagenic activity (4–6) and reduce off-target editing events (4,5). NEB* provides purified Cas9 Nuclease, *S. pyogenes* variants and Cas12a nuclease (Cpf1), *Lachnospiraceae* bacterium ND2006 with nuclear localization signals (NEB #M0646, NEB #M0653) as standalone enzymes to support direct introduction of Cas RNP complexes.

Increased genome editing efficiency using Cas9 RNP delivery




Ordering Information


PRODUCT	NEB #
Cas9 Nuclease, S. pyogenes	M0386S/T/M
EnGen Cas9 Nuclease, NLS, <i>S. pyogenes</i>	M0646T/M
EnGen Spy Cas9 Nickase	M0650S/T
EnGen Spy dCas9 (SNAP-tag®)	M0652S/T
EnGen Lba Cas12a (Cpfl)	M0653S/T

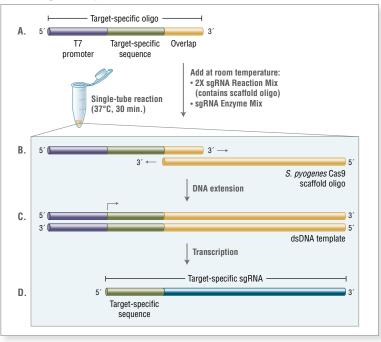

Cas9 and sgRNA targeting a human gene were delivered to HEK293 cells by transfection. Transfected plasmid DNA contained expression cassettes for 2x NLS (N- and C-terminal) Cas9 and sgRNA. Plasmid DNA was delivered using TransIT-X2 (Mirus). Transfected mRNA was modified with pseudouridine and 5-methylcytosine and encoded 2x NLS (N- and C-terminal) Cas9. sgRNA was co-transfected with the mRNA using TransIT-mRNA. Cas9 RNPs were delivered in reverse transfections using Lipofectamine RNAiMAX (Life Technologies) using 10 nanomolar final concentration of ribonucleoprotein (RNP). Cas9 has no NLS in the protein sequence. EnGen Cas9 has N- and C-terminal NLSs. The efficiency of editing was determined using T7 Endonuclease I assay and is expressed as % modification.

NEB's CRISPR Nuclease toolbox

Rapid Generation of sgRNA for Spy Cas9

The EnGen sgRNA Synthesis Kit simplifies the generation of microgram quantities of custom sgRNAs in an hour or less by combining template synthesis and transcription. The single-tube reaction is easy to set up and requires a single ~55 nt ssDNA targetspecific oligonucleotide, which is combined with the Reaction Mix and Enzyme Mix included in the kit. sgRNAs are suitable for use in downstream applications, including CRISPR/Cas9-based genome editing and in vitro DNA cleavage. This single-reaction format offers ease-of-use and eliminates separate DNA amplification and template clean up steps. This kit is compatible with EnGen Cas9 NLS, EnGen Spy Cas9 Nickase, and EnGen Spy dCas9 (SNAP-tag).

Ordering Information


PRODUCT	NEB#
EnGen sgRNA Synthesis Kit	E3322S

Need help configuring target-specific DNA oligos?

Try our EnGen sgRNA Template Oligo Designer (accessible through NEBioCalculator® at NEBiocalculator.neb.com)

EnGen sgRNA Synthesis Kit overview

This kit is really easy to use and will save us plenty of time in making sgRNAs! Thanks for the streamlined method!

- A. The target-specific oligo contains the T7 promoter sequence, ~20 nucleotides of targetspecific sequence and a 14-nucleotide overlap sequence complementary to the S. pyogenes Cas9 Scaffold Oligo, supplied in the reaction mix. Target-specific oligos are mixed with the EnGen 2X sgRNA Reaction Mix and the EnGen sgRNA Enzyme Mix at room temperature.
- B. At 37°C the two oligos anneal at the 14-nucleotide overlap region of complementarity.
- C. The DNA polymerase contained in the EnGen sqRNA Enzyme Mix extends both oligos from their 3´ ends, creating a dsDNA template.
- D. The RNA polymerase contained in the EnGen sgRNA Enzyme Mix recognizes the dsDNA of the T7 promoter and initiates transcription, resulting in a target-specific sgRNA.

All steps occur in a single reaction during a 30-minute incubation at 37°C.

GLOSSARY

Like any new technique, genome editing with CRISPR/Cas9 comes with a list of acronyms and abbreviations. This list should help you to familiarize yourself with the language associated with CRISPR/Cas9 studies.

Cas = CRISPR-associated genes

Cas9, Cas12a = a CRISPR-associated protein that is programmed by small RNAs to cleave DNA

CRNA = CRISPR RNA

dCAS9 = nuclease-deficient Cas9

DSB = Double-Stranded Break

gRNA = guide RNA

HDR = Homology-Directed Repair

HNH = an endonuclease domain named for characteristic histidine and asparagine residues

Indel = Insertion and/or deletion

NHEJ = Non-Homologous End Joining

PAM = Protospacer-Adjacent Motif

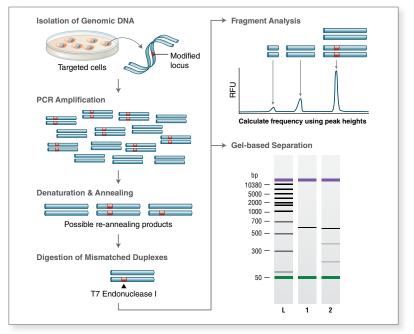
RNP = ribonucleoprotein

RuvC = an endonuclease domain named for an *E. coli* protein involved in DNA repair

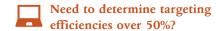
sgRNA = single guide RNA

tracrRNA = trans-activating crRNA

TALEN = Transcription-Activator Like Effector Nuclease


ZFN = Zinc-Finger Nuclease

Evaluating Targeting Efficiency with the EnGen Mutation Detection Kit and T7 Endonuclease I


A widely used method to identify mutations is the T7 Endonuclease I mutation detection assay (10,11). This assay detects heteroduplex DNA that results from the annealing of a DNA strand, including desired mutations, with a wild-type DNA strand. The EnGen Mutation Detection Kit provides optimized reagents for performing robust T7 Endonuclease-based detection of genome editing events.

Workflow for EnGen Mutation Detection Kit

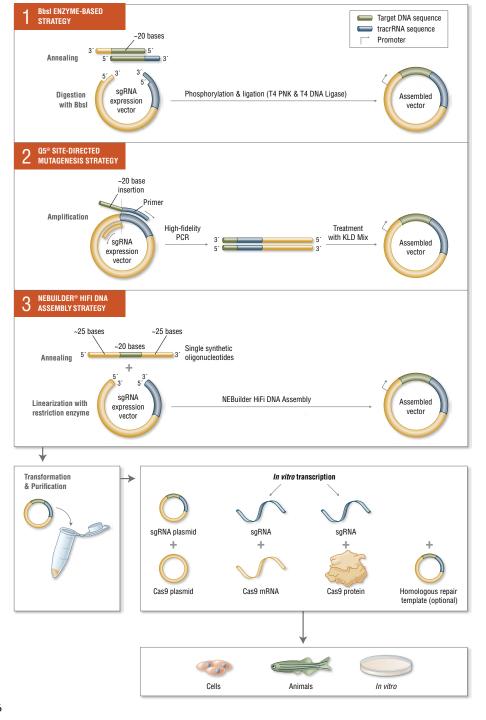
Ordering Information

PRODUCT	NEB#
EnGen Mutation Detection Kit	E3321S
T7 Endonuclease I	M0302S/L
Q5® Hot Start High-Fidelity 2X Master Mix	M0494S/L

Visit www.neb.com/Cas9locusmod to find out how.

Genomic DNA is amplified with primers bracketing the modified locus. PCR products are then denatured and re-annealed yielding three classes of possible structures. Duplexes containing a mismatch greater than one base are digested by T7 Endonuclease I. The DNA is then electrophoretically separated and fragment analysis is used to estimate targeting efficiency.

Designing Homologous Repair Templates


Modifications of Cas9-target sites can be achieved by supplying a homologous repair template in addition to sgRNA and Cas9. Homologous repair templates can be plasmids or oligonucleotides containing regions of homology surrounding the target sequence, that are altered to have the desired mutations. Plasmids can be used to "knock-in" larger insertions, such as selectable markers or fluorescent tags. To construct a plasmid template, the homologous region can be amplified from genomic DNA using a high-fidelity polymerase, and then cloned into your plasmid backbone. NEB suggests Q5 High Fidelity DNA Polymerase products for this amplification, followed by the NEB PCR Cloning Kit. Further modifications can then be introduced using NEBuilder HiFi DNA Assembly Master Mix or by site-directed mutagenesis, using the Q5 Site-Directed Mutagenesis Kit.

Ordering Information

PRODUCT	NEB#	
Q5 Hot Start High-Fidelity 2X Master Mix	M0494S/L	
NEB PCR Cloning Kit	E1202S	
NEBuilder HiFi DNA Assembly Master Mix	E2621S/L/X	
NEBuilder HiFi DNA Assembly Cloning Kit	E5520S	
Q5 Site-Directed Mutagenesis Kit	E0554S	
Q5 Site-Directed Mutagenesis Kit (without Competent Cells)	E0552S	

sgRNA Template Construction for CRISPR/Cas Genome Editing

Cas9 experiments require the introduction of guide RNAs, in addition to Cas9 nuclease. sgRNAs contain a 20-base sequence, specific to the target DNA, upstream of an invariant scaffold sequence. sgRNAs can be delivered as an RNA made *in vitro*, or by delivering an expression cassette in which the sgRNA is transcribed from an upstream promoter. For researchers using plasmid-based expression of sgRNA in target cells, or sgRNAs made *in vitro* from plasmid templates, NEB provides tools to support a number of strategies to quickly change the 20-bp targeting sequence of sgRNA templates.

Ordering Information

PRODUCT	NEB #	
Bbsl	R0539S/L	
T4 DNA Ligase	M0202S/T/L/M	
T4 Polynucleotide Kinase	M0201S/L	

PRODUCT	NEB #
Q5 Site-Directed Mutagenesis Kit	E0554S
Q5 Site-Directed Mutagenesis Kit (Without Competent Cells)	E0552S

PRODUCT	NEB #
Q5 Hot Start High-Fidelity 2X Master Mix	M0494S/L
NEBuilder HiFi DNA Assembly Master Mix	E2621S/L/X
NEBuilder HiFi DNA Assembly Cloning Kit	E5520S

PRODUCT	NEB #
EnGen sgRNA Synthesis Kit	E3322S
NEB 5-alpha Competent <i>E. coli</i> (High Efficiency)	C2987P/R/I/H/U
NEB 10-beta Competent <i>E. coli</i> (High Efficiency)	C3019I/H
HiScribe™ T7 ARCA mRNA Kit	E2065S
HiScribe T7 ARCA mRNA Kit (with tailing)	E2060S
HiScribe T7 High Yield RNA Synthesis Kit	E2040S
HiScribe T7 Quick High Yield RNA Synthesis Kit	E2050S
RNA Cap Structure Analog 3´-O-Me-m ⁷ G(5´) ppp(5´)G	S1411S/L
Vaccinia Capping System	M2080S

Featured NEB Products Supporting CRISPR Workflows

PRODUCT NAME	CRISPR/CAS9 APPLICATION	NEB #	SIZE
EnGen Cas9 Nuclease NLS, <i>S. pyogenes</i>	In vitro cleavage of dsDNA. Genome engineering by direct introduction of active nuclease complexes.	M0646T/M	400/2,000 pmol
EnGen Mutation Detection Kit	Determination of the targeting efficiency of genome editing protocols	E3321S	25 rxns
EnGen sgRNA Synthesis Kit	Generation of microgram quantities of custom sgRNA	E3322S	20 rxns
NEW EnGen Spy Cas9 Nickase	In vitro nicking of dsDNA. Genome engineering by direct introduction of active nuclease complexes.	M0650S/T	400/700 pmol
NEW EnGen Spy dCas9 (SNAP-tag®)	<i>In vitro</i> binding of DNA. Compatible with SNAP-tag substrates for visualization and enrichment.	M0652S/T	400/700 pmol
NEW EnGen Lba Cas12a (Cpfl)	In vitro cleavage of dsDNA. Genome engineering by direct introduction of active nuclease complexes. Recognizes 5'-TTTN PAM.	M0653S/T	400/2,000 pmol
Cas9 Nuclease, S. pyogenes	In vitro cleavage of dsDNA. Genome engineering by direct introduction of active nuclease complexes.	M0386S/T/M	70/300/600 pmol
Q5 Site-directed Mutagenesis Kit (with or without competent cells)	Insertion of target sequence into the Cas9-sgRNA construct and modification of HDR templates	E0554S/E0552S	10 rxns
Q5 High-fidelity DNA Polymerases	High-fidelity construct generation for use with CRISPR workflows	Multiple*	Multiple*
NEBuilder HiFi DNAAssembly Master Mix	Single-tube, isothermal generation of the Cas9-sgRNA construct and HDR templates	E2621S/L/X	10/50/250 rxns
NEBuilder HiFi DNA Assembly Cloning Kit	Single-tube, isothermal generation of the Cas9-sgRNA construct and HDR templates	E5520S	10 rxns
HiScribe T7 ARCA mRNA Kit (with or without tailing)	Generation of Cas9 mRNA with ARCA cap	E2060S/E2065S	20 rxns
HiScribe T7 High Yield RNA Synthesis Kit	Generation of sgRNA and Cas9 mRNA	E2040S	50 rxns
HiScribe T7 Quick High Yield RNA Synthesis Kit	Generation of sgRNA and Cas9 mRNA	E2050S	50 rxns
T7 Endonuclease I	Determination of the targeting efficiency of genome editing protocols	M0302S/L	250/1,250 units

^{*} Visit Q5PCR.com for ordering information.

References

- Jinek, M., et al. (2012) Science, 337, 816-821.
- Overballe-Petersen, S., et al. (2013) Proc. Natl. Acad. Sci. U.S.A., 110, 19860-19865.
- Gong, C., et al. (2005) Nat. Struct. Mol. Biol., 12, 304-312.
- Kouranova E, et al. (2016) Human Gene Ther., 27(6):464–75. Sander, J.D., and Joung, J.K. (2014) Nat. Biotechnol. 32(4):347–55.
- 6. Kim, S., et al. (2014) Genome Research, 24, 1012-1019.
- Gagnon, J.A., et al. (2014) *PLoS ONE*, 9(5), e98186.
 Lee, J.S., et al. (2014) *G3* (Bethesda), 4(7), 1291–1295.
- Cho, S.W., et al. (2013) Genetics, 195, 1177-1180.
- 10. Reyon, D. et al. (2012) Nat. Biotechnol., 30(5):460-5 11. Vouillot, L., et al. (2015) *G3* (Bethesda), 5(3):407–15.

ONLINE RESOURCES

Plasmid Repositories

addgene.org

CRISPR-gRNA Design Tools

- · deskgen.com
- · crispr.mit.edu
- · zifit.partners.org/ZiFiT
- e-crisp.org
- · chopchop.rc.fas.harvard.edu
- · benchling.com

Online Forums

· groups.google.com/forum/#!forum/crispr

Organism-specific Resources

- · wormcas9hr.weebly.com
- · flyrnai.org

Visit neb.com to find:

Protocols for applications such as sgRNA synthesis and direct introduction of sgRNA/Cas9 complexes

EnGen sgRNA Template Oligo Designer (accessible through NEBioCalculator® at NEBiocalculator.neb.com)

NEBuilder® for DNA Assembly (**NEBuilder.neb.com**)

NEBaseChanger® for the Q5 Site-Directed Mutagenesis Kit (NEBaseChanger.neb.com)

USA

New England Biolabs, Inc. Telephone: (978) 927-5054

Toll Free (USA Orders): 1-800-632-5227 Toll Free (USA Tech): 1-800-632-7799

Fax: (978) 921-135 info@neb.com www.neb.com

www.neb.com

Germany & Austria

New England Biolabs GmbH Brüningstr. 50, Geb B852 65926 Frankfurt/Main, Germany Tel: +49/(0)69/305-23140 Fax: +49/(0)69/305-23149

Free Call: 0800/246 5227 (Germany) Free Call: 00800/246 52277 (Austria) info.de@neb.com

www.neb-online.de

France

New England Biolabs France SAS Genopole Campus 1, Bâtiment 6 5 rue Henri Desbruères 91030 Evry cedex, France Tel.: 0800 100 632 (Customer Service) Tel.: 0800 100 633 (Technical Service) FAX.: 0800 100 610 info.fr@neb.com Canada

New England Biolabs, Ltd. Toll Free: 1-800-387-1095 info.ca@neb.com

China, People's Republic

New England Biolabs (Beijing), Ltd. Telephone: 010-82378265/82378266 info@neb-china.com

Japan

New England Biolabs Japan, Inc. Telephone: +81 (0)3 5669 6191

Singapore

New England Biolabs, PTE. Ltd. Telephone: +65 63859623 sales.sg@neb.com

United Kingdom

New England Biolabs (UK), Ltd. Call Free: 0800 318486 info.uk@neb.com

www.neb-online.fr

One or more of these products are covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc. However, its use may require you to obtain additional third party intellectual property rights for certain applications.

For more information, please email us at gbd@neb.com.

Your purchase, acceptance, and/or payment of and for NEB's products is pursuant to NEB's Terms of Sale at www.neb.com/support/terms-of-sale. NEB does not agree to and is not bound by any other terms or conditions, unless those terms and conditions have been expressly agreed to in writing by a duly authorized officer of NEB.

© Copyright 2018, New England Biolabs, Inc.; all rights reserved

Gene_Editing - Version 4.0 - 1/18

Featured Online Tools

For help with configuring target-specific DNA oligos, try our EnGen sgRNA Template Oligo Designer (accessible through NEBioCalculator* at NEBiocalculator.neb.com)

For help with designing primers for DNA assembly, try **NEBuilder DNA Assembly Tool** (**NEBuilder.neb.com**)

